3.399 \(\int \frac{\tan ^{\frac{3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx\)

Optimal. Leaf size=297 \[ \frac{2 a^{3/2} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2} d \left (a^2+b^2\right )}-\frac{(b (A-B)-a (A+B)) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}+\frac{(b (A-B)-a (A+B)) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )}+\frac{(a (A-B)+b (A+B)) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}-\frac{(a (A-B)+b (A+B)) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{2 B \sqrt{\tan (c+d x)}}{b d} \]

[Out]

-(((b*(A - B) - a*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d)) + ((b*(A - B) - a*
(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) + (2*a^(3/2)*(A*b - a*B)*ArcTan[(Sqrt
[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(b^(3/2)*(a^2 + b^2)*d) + ((a*(A - B) + b*(A + B))*Log[1 - Sqrt[2]*Sqrt[Tan[
c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) - ((a*(A - B) + b*(A + B))*Log[1 + Sqrt[2]*Sqrt[Tan[c + d
*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + (2*B*Sqrt[Tan[c + d*x]])/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.653632, antiderivative size = 297, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 12, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364, Rules used = {3607, 3653, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ \frac{2 a^{3/2} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2} d \left (a^2+b^2\right )}-\frac{(b (A-B)-a (A+B)) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}+\frac{(b (A-B)-a (A+B)) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )}+\frac{(a (A-B)+b (A+B)) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}-\frac{(a (A-B)+b (A+B)) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{2 B \sqrt{\tan (c+d x)}}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x]),x]

[Out]

-(((b*(A - B) - a*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d)) + ((b*(A - B) - a*
(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) + (2*a^(3/2)*(A*b - a*B)*ArcTan[(Sqrt
[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(b^(3/2)*(a^2 + b^2)*d) + ((a*(A - B) + b*(A + B))*Log[1 - Sqrt[2]*Sqrt[Tan[
c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) - ((a*(A - B) + b*(A + B))*Log[1 + Sqrt[2]*Sqrt[Tan[c + d
*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + (2*B*Sqrt[Tan[c + d*x]])/(b*d)

Rule 3607

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*
f*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[a^2*A*d*(m +
 n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m
 - 1) - b*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&
 !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^{\frac{3}{2}}(c+d x) (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx &=\frac{2 B \sqrt{\tan (c+d x)}}{b d}+\frac{2 \int \frac{-\frac{a B}{2}-\frac{1}{2} b B \tan (c+d x)+\frac{1}{2} (A b-a B) \tan ^2(c+d x)}{\sqrt{\tan (c+d x)} (a+b \tan (c+d x))} \, dx}{b}\\ &=\frac{2 B \sqrt{\tan (c+d x)}}{b d}+\frac{2 \int \frac{-\frac{1}{2} b (a A+b B)+\frac{1}{2} b (A b-a B) \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx}{b \left (a^2+b^2\right )}+\frac{\left (a^2 (A b-a B)\right ) \int \frac{1+\tan ^2(c+d x)}{\sqrt{\tan (c+d x)} (a+b \tan (c+d x))} \, dx}{b \left (a^2+b^2\right )}\\ &=\frac{2 B \sqrt{\tan (c+d x)}}{b d}+\frac{4 \operatorname{Subst}\left (\int \frac{-\frac{1}{2} b (a A+b B)+\frac{1}{2} b (A b-a B) x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{b \left (a^2+b^2\right ) d}+\frac{\left (a^2 (A b-a B)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} (a+b x)} \, dx,x,\tan (c+d x)\right )}{b \left (a^2+b^2\right ) d}\\ &=\frac{2 B \sqrt{\tan (c+d x)}}{b d}+\frac{\left (2 a^2 (A b-a B)\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{b \left (a^2+b^2\right ) d}+\frac{(b (A-B)-a (A+B)) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac{(a (A-B)+b (A+B)) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=\frac{2 a^{3/2} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac{2 B \sqrt{\tan (c+d x)}}{b d}+\frac{(b (A-B)-a (A+B)) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}+\frac{(b (A-B)-a (A+B)) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}+\frac{(a (A-B)+b (A+B)) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a (A-B)+b (A+B)) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}\\ &=\frac{2 a^{3/2} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac{(a (A-B)+b (A+B)) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a (A-B)+b (A+B)) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{2 B \sqrt{\tan (c+d x)}}{b d}+\frac{(b (A-B)-a (A+B)) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}-\frac{(b (A-B)-a (A+B)) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}\\ &=-\frac{(b (A-B)-a (A+B)) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{(b (A-B)-a (A+B)) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{2 a^{3/2} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{b^{3/2} \left (a^2+b^2\right ) d}+\frac{(a (A-B)+b (A+B)) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a (A-B)+b (A+B)) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{2 B \sqrt{\tan (c+d x)}}{b d}\\ \end{align*}

Mathematica [C]  time = 0.3355, size = 165, normalized size = 0.56 \[ \frac{-2 a^{3/2} (a B-A b) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )+2 \sqrt{b} B \left (a^2+b^2\right ) \sqrt{\tan (c+d x)}+\sqrt [4]{-1} b^{3/2} (a+i b) (A-i B) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )+\sqrt [4]{-1} b^{3/2} (a-i b) (A+i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )}{b^{3/2} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x]),x]

[Out]

((-1)^(1/4)*(a + I*b)*b^(3/2)*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] - 2*a^(3/2)*(-(A*b) + a*B)*ArcTa
n[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]] + (-1)^(1/4)*(a - I*b)*b^(3/2)*(A + I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Tan[c
 + d*x]]] + 2*Sqrt[b]*(a^2 + b^2)*B*Sqrt[Tan[c + d*x]])/(b^(3/2)*(a^2 + b^2)*d)

________________________________________________________________________________________

Maple [B]  time = 0.048, size = 628, normalized size = 2.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x)

[Out]

2*B*tan(d*x+c)^(1/2)/b/d+2/d*a^2/(a^2+b^2)/(a*b)^(1/2)*arctan(tan(d*x+c)^(1/2)*b/(a*b)^(1/2))*A-2/d/b*a^3/(a^2
+b^2)/(a*b)^(1/2)*arctan(tan(d*x+c)^(1/2)*b/(a*b)^(1/2))*B-1/2/d/(a^2+b^2)*A*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+
c)^(1/2))*a-1/2/d/(a^2+b^2)*A*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*a-1/4/d/(a^2+b^2)*A*2^(1/2)*ln((1+2^
(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*a-1/2/d/(a^2+b^2)*B*2^(1/2)*arctan
(1+2^(1/2)*tan(d*x+c)^(1/2))*b-1/2/d/(a^2+b^2)*B*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*b-1/4/d/(a^2+b^2)
*B*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*b+1/4/d/(a^2+b^
2)*A*2^(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*b+1/2/d/(a^2+
b^2)*A*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*b+1/2/d/(a^2+b^2)*A*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/
2))*b-1/4/d/(a^2+b^2)*B*2^(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x
+c)))*a-1/2/d/(a^2+b^2)*B*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*a-1/2/d/(a^2+b^2)*B*2^(1/2)*arctan(-1+2^(
1/2)*tan(d*x+c)^(1/2))*a

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out